Bulletin references July 2021

A full list of references for the July Bulletin is available here.

You can download a copy of the July 2021 Bulletin from our Bulletin pages.

Perinatal mortality – are we learning?

 

  1. Kirkup B. The Report of the Morecambe Bay Investigation. Accessed April 2021. Available at: www.gov.uk/government/publications/morecambe-bay-investigation-report
     
  2. Department of Health and Social Care. Safer Maternity Care – Next Steps Towards the National Maternity Ambition. Accessed April 2021. Available at: www.gov.uk/government/publications/safer-maternity-care
     
  3. Cumberlege JF. Better Births – Improving Outcomes of Maternity Services in England. Accessed April 2021. Available at: www.england.nhs.uk/publication/better-births-improving-outcomes-of-maternity-services-in-england-a-five-year-forward-view-for-maternity-care/
     
  4. NHS England. Saving Babies Lives. Accessed April 2021. Available at: www.england.nhs.uk/?s=saving+babies+lives
     
  5. Royal College of Obstetricians and Gynaecologists. Each Baby Counts 2019 Progress Report. Accessed April 2021. Available at: www.rcog.org.uk/en/guidelines-research-services/audit-quality-improvement/each-baby-counts/reports-updates/
     
  6. Department of Health and Social Care. The National Maternity Safety Strategy - Progress and Next Steps. Accessed April 2021. Available at: www.gov.uk/government/publications/safer-maternity-care
     
  7. Department of Health and Social Care. Evidence Submission for the Health and Social Care Committee Inquiry – Safety of Maternity Services in England. Accessed April 2021. Available at: https://committees.parliament.uk/writtenevidence/11114/html/
     
  8. Ockenden D. Maternity Services at the Shrewsbury and Telford Hospital NHS Trust. Accessed April 2021. Available at: www.gov.uk/government/publications/ockenden-review-of-maternity-services-at-shrewsbury-and-telford-hospital-nhs-trust
     
  9. IIEKMS. Independent Investigation into East Kent Maternity Services. Accessed April 2021. Available at: https://iiekms.org.uk/
     
  10. Spiegelhalter DJ. Funnel plots for comparing institutional performance. Statist Med 2005;24:1185–1202.
     
  11. Flenady V, Wojcieszek AM, Middleton P, Ellwood D, Erwich JJ, Coory M et al. Stillbirths: Recall to action in high-income countries. Lancet 2016;387:691–702.

The evolution of paediatric laboratory medicine

 

  1. Chemical Pathology: Clinical Tests and Paediatric . Clayton BE, Jenkins P, Round JM, 1980.Blackwell Scientific PublicationsNew Jersey, USA: .Reference Ranges
     
  2. Meites S. Pediatric Clinical Chemistry: Reference (Normal) Values. Washington DC, AACC Press, 1989.
     
  3. Coakley J. 40 years of paediatric chemical pathology – a personal view. Pathol 2015;47:14.
     
  4. Coffin CM, Hamilton MS, Pysher TJ, Bach P, Ashwood E, Schweiger J et al. Paediatric laboratory medicine: current challenges and future opportunities. Am J Clinical Pathol 2002;117:683–690.
     
  5. Kohse KP. A worldwide paediatric laboratory medicine network: the International Federation of Clinical Chemistry Task Force on Paediatric Laboratory Medicine (IFCC TF-PLM). J Clin Pathol 2009;62:193–194.
     
  6. Grey VL, Loh TP, Metz M, Lang T, Hersberger M. Paediatric laboratory medicine – some reflections on the sub-specialty. Clin Biochem 2017;50:648–650.
     
  7. South African Association for Clinical Biochemistry and Laboratory Medicine. SAACB News. 2018. Available at: http://www.saclinpath.co.za/newsletters/SAACB_Feb_2018_newsletter.pdf
     
  8. Jones PM, Dietzen D, Haymond S, Bennett M. Paediatric Laboratory Medicine (1st edition). New York, USA: McGraw-Hill Education, 2017.
     
  9. Bowron A, Merrett N. The metabolic biochemistry network: an update and review of resources. In: ACB News. London, UK: Association for Clinical Biochemistry and Laboratory Medicine, 2018.

Major obstetric haemorrhage – achievements and ongoing challenges

 

  1. Say L, Chou D, Gemmill A, Tunçalp Ö, Moller AB, Daniels J et al. Global causes of maternal death: A WHO systematic analysis. Lancet Glob Heal 2014;2:323–333.
     
  2. Cantwell R, Clutton-Brock T, Cooper G, Dawson A, Drife D, Garrod D et al. Saving Mothers’ Lives: Reviewing maternal deaths to make motherhood safer: 2006–2008. An Int J Obstet Gynaecol 2011;118:1–203.
     
  3. Lennox C, Marr L. Scottish Confidential Audit of Severe Maternal Morbidity: Reducing Avoidable Harm. 10th Annual Report. Accessed 12 March 2021. Available here.
     
  4. Mavrides E, Allard S, Chandraharan E, Collins P, Green L, Hunt BJ et al. Prevention and management of postpartum haemorrhage. An Int J Obstet Gynaecol 2016;124:106–149.
     
  5. Knight M, Callaghan WM, Berg C, Alexander S, Bouvier-Colle MH, Ford JB et al. Trends in postpartum hemorrhage in high resource countries: A review and recommendations from the international postpartum hemorrhage collaborative group. BMC Pregnancy Childbirth 2009;9:55
     
  6. Hunt BJ, Allard S, Keeling D, Norfolk D, Stanworth SJ, Pendry K et al. A practical guideline for the haematological management of major haemorrhage. Br J Haematol 2015;170:788–803.
     
  7. Whiting P, Al M, Westwood M, Corro Ramos I, Ryder S, Armstrong N et al. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: A systematic review and cost-effectiveness analysis. Health Technol Assess 2015;19:1–228.
     
  8. Amgalan A, Allen T, Othman M, Ahmadzia HK. Systematic review of viscoelastic testing (TEG/ROTEM) in obstetrics and recommendations from the women’s SSC of the ISTH. J Thromb Haemost 2020;18:1813–1838.
     
  9. WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet 2017;389:2105–2116.
     
  10. Charbit B, Mandlebrot L, Samain E, Baron G, Haddaoui B, Keita H et al. The decrease of fibrinogen is an early predictor of the severity of postpartum hemorrhage. J Thromb Haemost 2007;5:266–273.
     
  11. Zaidi A, Kohli R, Daru J, Estcourt L, Khan KS, Thangaratinam S et al. Early use of fibrinogen replacement therapy in postpartum hemorrhage – a systematic review. Transfus Med Rev 2020;34:101–107.
     
  12. Ducloy-Bouthors AS, Mercier FJ, Grouin JM, Bayoumeu F, Corouge J, Le Gouez A et al. Early and systematic administration of fibrinogen concentrate in postpartum haemorrhage following vaginal delivery: the FIDEL randomised controlled trial. BJOG 2021;doi:10.1111/1471-0528.16699 (Epub ahead of print).
     
  13. Green L, Daru J, Dodds J, Gonzalez Carreras FJ, Lanz D, Zamora J et al. Effect of early cryoprecipitate transfusion versus standard care in women who develop severe postpartum haemorrhage (ACROBAT) in the UK: a protocol for a pilot cluster randomised trial. BMJ Open 2020;10:e036416.
     
  14. Lavigne-Lissalde G, Aya AG, Mercier FJ, Roger-Christoph S, Chauleur C, Morau E et al. Recombinant human FVIIa for reducing the need for invasive second-line therapies in severe refractory postpartum hemorrhage: a multicenter, randomized, open controlled trial. J Thromb Haemost 2015;13:520–529.
     
  15. Khan KS, Moore P, Wilson M, Hooper R, Allard S, Wrench I et al. A randomised controlled trial and economic evaluation of intraoperative cell salvage during caesarean section in women at risk of haemorrhage: The salvo (cell salvage in obstetrics) trial. Health Technol Assess 2018;22:1–88.

Healthcare Safety Investigation Branch

 

  1. Healthcare Safety Investigation Branch. Maternal Death: Learning from Maternal Death Investigations During the First Wave of the COVID-19 Pandemic. Accessed 23 April 2021. Available at: www.hsib.org.uk/investigations-cases/maternal-death-national-learning-report/
     
  2. Department of Health and Social Care. Coronavirus: Stay at Home, Protect the NHS, Save Lives. Accessed 12 February 2021. Available at: www.gov.uk/government/publications/coronavirus-covid-19-information-leaflet/coronavirus-stay-at-home-protect-the-nhs-save-lives-web-version
     
  3. Healthcare Safety Investigation Branch. COVID-19 Transmission in Hospitals: Management of the Risk – A Prospective Safety Investigation. Accessed 12 February 2021. Available at: www.hsib.org.uk/investigations-cases/covid-19-transmission-hospitals/
     
  4. Monari F, Pedrielli G, Vergani P, Pozzi E, Mecacci F, Serenaet C et al. Adverse perinatal outcome in subsequent pregnancy after stillbirth by placental vascular disorders. PLoS One 2016;11:e0155761.
     
  5. Heazell AE, Martindale EA. Can post-mortem examination of the placenta help determine the cause of stillbirth? J Obstet Gynaecol 2009;29:225–228.
     
  6. Vik T, Redline R, Nelson KB, Bjellmo S, Vogt C, Ng P et al. The placenta in neonatal encephalopathy: A case-control study. J Pediatr 2018;202:77–85.
     
  7. Cox P, Evans C. Tissue Pathway for Histopathological Examination of the Placenta. London, UK: The Royal College of Pathologists, 2019. Available at: www.rcpath.org/G108-Tissue-pathway-for-histopathological-examination-of-the-placenta

Successes and challenges in newborn screening for metabolic disorders

 

  1. European Commission. EU Research on Rare Diseases. Available at: https://ec.europa.eu/info/research-and-innovation/research-area/health-research-and-innovation/rare-diseases_en
     
  2. Office for National Statistics. Child Mortality (death cohort) Tables in England and Wales for 2019. Available here.
     
  3. UK National Screening Committee. Criteria for Appraising the Viability, effectiveness and appropriateness of a Screening Programme. Available at: www.gov.uk/government/publications/evidence-review-criteria-national-screening-programmes/criteria-for-appraising-the-viability-effectiveness-and-appropriateness-of-a-screening-programme
     
  4. Bessey A, Chilcott J, Pandor A, Paisley S. The cost-effectiveness of expanding the UK newborn bloodspot screening programme to include five additional inborn errors of metabolism. Int J Neonatal Screen 2020;6:93.
     
  5. American College of Medical Genetics and Genomics. ACMG ACT Sheets and Algorithms. www.acmg.net/ACMG/Medical-Genetics-Practice-Resources/ACT_Sheets_and_Algorithms.aspx
     
  6. Public Health England. Newborn Bloodspot Screening Programme in the UK. Available here.

 

Rh-D haemolytic disease of the fetus and newborn – the role of SHOT in improving care

 

  1. NICE. Routine Antenatal Anti-D Prophylaxis for Women Who Are Rhesus D Negative. Accessed May 2021. Available at: www.nice.org.uk/guidance/ta156/chapter/2-Clinical-need-and-practice
     
  2. Qureshi H, Massey E, Kirwan D, Davies T, Robson S, White J et al. BCSH guideline for the use of anti‐D immunoglobulin for the prevention of haemolytic disease of the fetus and newborn. Transfus Med 2014;24:8–20.
     
  3. NICE. High-throughput Non-invasive Prenatal Testing for Fetal RHD Genotype. Accessed May 2021. Available at: www.nice.org.uk/guidance/dg25/chapter/3-the-diagnostic-tests
     
  4. Serious Hazards of Transfusion. Annual SHOT Report 2020. Accessed May 2021. Available at: https://www.shotuk.org/shot-reports/
     
  5. Serious Hazards of Transfusion. Anti-D Aide Memoire. Available at: www.shotuk.org/wp-content/uploads/myimages/Anti-D-Aide-Memoire-July-2020.pdf
     
  6. Serious Hazards of Transfusion. Bite No. 2 Anti-D Ig Administration. Available at: www.shotuk.org/resources/current-resources/shot-bites/
     
  7. NHS Blood and Transplant. Molecular Diagnostics – Optimising Antenatal Care. Available at: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/16291/inf1481-ibgrl-brochure.pdf

Anaemia in pregnancy and the postpartum period

 

  1. World Health Organization. The Global Prevalence of Anaemia in 2011. Geneva, Switzerland: WHO, 2015.
     
  2. Pavord S, Myers B, Robinson S, Allard S, Strong J, Oppenheimer C. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol 2021;156:588–600.
     
  3. Pavord S, Daru J, Prasannan N, Robinson S, Stanworth S, Girling J. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol 2020;188:819–830.
     
  4. Global Nutrition Report. 2020 Global Nutrition Report. Available at: https://globalnutritionreport.org/reports/2020-global-nutrition-report/
     
  5. NHS Blood and Transplant. 2018/19 Audit of the Management of Maternal Anaemia and Iron Deficiency in the UK and Republic of Ireland. Available at: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/19996/2018-maternal-anaemia-audit-summary.pdf
     
  6. Figueiredo ACMG, Gomes-Filho IS, Batista JET, Orrico GS, Porto ECL, Pimenta RMC et al. Maternal anemia and birth weight: A prospective cohort study. PLoS One 2019;14:0212817.
     
  7. Rahmati S, Azami M, Badfar G, Parizad N, Sayehmiri K. The relationship between maternal anemia during pregnancy with preterm birth: a systematic review and meta-analysis. J Matern Neonatal Med 2020;33:2679–2689.
     
  8. Azami M, Badfar G, Khalighi Z, Qasemi P, Shohami M, Soleymani A et al. The association between anemia and postpartum depression: A systematic review and meta-analysis. Caspian J Intern Med 2019;10:115–124.
     
  9. Sheikh M, Hantoushzadeh S, Shariat M, Farahani Z, Ebrahiminasab O. The efficacy of early iron supplementation on postpartum depression, a randomized double-blind placebo-controlled trial. Eur J Nutr 2017;56:901–908.

Post-partum haemorrhage in Africa: achievements and ongoing challenges

 

  1. WHO, UNICEF. Revised 1990 estimates of maternal mortality: a new approach by WHO and UNICEF. Geneva: World Health Organization, 1996. Available here.
     
  2. WHO, UNICEF, UNFPA. Maternal mortality in 1995: estimates developed by WHO, UNICEF, UNFPA. Geneva: World Health Organization, 2001. Available at: https://apps.who.int/iris/handle/10665/66837
     
  3. Rattray RS. Religion and Art in Ashanti. Oxford, UK: Oxford University Press, Chapter VI, pp 86−115, 1927.
     
  4. Harrison KA. Maternal Mortality in Nigeria: The Real Issues. Afr J Reprod Health 1997;1:7−13.
     
  5. United Nations. World Population Prospects, The 2006 Revision. Volume I: Comprehensive Tables. NY, USA: Department of Economic and Social Affairs, 2007. Available here.
     
  6. United Nations. World Population Prospects: The 2000 Revision: Highlights. NY, USA: Department of Economic and Social Affairs, 2001.
     
  7. WHO, UNICEF, UNFPA, World Bank Group and United Nations Population Division. Trends in maternal mortality: 1990 to 2015. Published 2015. Available at: http://apps.who.int/iris/bitstream/handle/10665/194254/9789241565141_eng.pdf?sequence=1
     
  8. Loudon I. Death in Childbirth: An International Study of Maternal Care and Maternal Mortality, 1800–1950. Oxford, UK: Clarendon Press, 1992.
     
  9. United Nations. The Millennium Development Goals Report. Published 2015. Available at: www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201).pdf
     
  10. Ahmed S, Li Q, Liu L, Tsui AO. Maternal deaths averted by contraceptive use: an analysis of 172 countries. The Lancet 2012;380:111−125.
     
  11. Manasyan A, Saleem S, Koso-Thomas M, Althabe F, Pasha O, Chomba E et al; for the EmONC Trial Group. Assessment of Obstetric and Neonatal Health Services in Developing Country Health Facilities. Am J Perinatol 2013;30:787–794.
     
  12. Wong KLM, Benova L, Campbell OMR. A look back on how far to walk: Systematic review and meta-analysis of physical access to skilled care for childbirth in Sub-Saharan Africa. PLoS One 2017;12:e0184432.
     
  13. Tessema ZT, Tesema GA. Pooled prevalence and determinants of skilled birth attendant delivery in East African countries: a multilevel analysis of Demographic and Health Surveys. Ital J Pediatr 2020;46:177.
     
  14. Fagbamigbe AF, Hurricane-Ike EO , Yusuf OB, Idemudia ES. Trends and drivers of skilled birth attendant use in Nigeria (1990−2013): policy implications for child and maternal health. Int J Womens Health 2017;9:843−853.
     
  15. Medical and Dental Council of Ghana. Available at: www.mdcghana.org
     
  16. Bearak J, Popinchalk A, Ganatra B, Moller A-B, Tunçalp O, Beavin C et al. Unintended pregnancy and abortion by income, region, and the legal status of abortion: estimates from a comprehensive model for 1990–2019. Lancet Glob Health 2020;8:e1152−e1161.
     
  17. Ahmed S, Choi Y, Rimon JG, Alzouma S, Gichangi P, Guiella G et al. Trends in contraceptive prevalence rates in sub-Saharan Africa since the 2012 London Summit on Family Planning: results from repeated cross-sectional surveys. Lancet Glob Health 2019;7:e904−e911.
     
  18. Ntambue AM, Malonga FK, Cowgill KD, Dramaix-Wilmet MP. Emergency obstetric and neonatal care availability, use, and quality: a cross-sectional study in the city of Lubumbashi, Democratic Republic of the Congo, 2011. BMC Pregnancy Childbirth 2017;17:40.
     
  19. Mirkuzie AH, Sisay MM, Reta AT, Bedane MM. Current evidence on basic emergency obstetric and newborn care services in Addis Ababa, Ethiopia; a cross sectional study. BMC Pregnancy Childbirth 2014;14:354.
     
  20. Mullany LC, Newton S, Afari-Asiedu S, Adiibokah E, Agyemang CT, Cofie P et al. Cumulative effects of heat exposure and storage conditions of Oxytocin-in-Uniject in rural Ghana: implications for scale up. Glob Health Sci Pract 2014;2:285–294.

Is our freedom from brucellosis going to the dogs?

 

  1. Wyatt, HV. Lessons from the history of brucellosis. Rev Sci Tech 2013;32:17–25.
     
  2. Young DA. Florence Nightingale’s fever. Brit Med J 1995;311:1697–1700.
     
  3. Eyre JW. Recent work on Mediterranean Fever. Int J Med 1908;1:209–222.
     
  4. Carmichael LE, Kenney RM. Canine abortion caused by Brucella canis. J Am Vet Med Assoc 1968;152:605–616.
     
  5. World Health Organisation. Brucellosis. Accessed April 2021. Available at: www.who.int/news-room/fact-sheets/detail/brucellosis
     
  6. Hensel ME, Negron M, Arenas-Gamboa AM. Brucellosis in dogs and public health risk. Emerg Infect Dis 2018;24:1401–1406.
     
  7. Cosford KL. Brucella canis: An update on research and clinical management. Can Vet J 2018;59:74–81.
     
  8. Wurtz N, Papa A, Hukic M, Caro AD, Leparc-Goffart I, Leroy E et al. Survey of laboratory-acquired infections around the world in biosafety level 3 and 4 laboratories. Eur J Clin Microbiol Infect Dis 2016;35:1247–1258.
     
  9. Weinstein RA, Singh K. Laboratory-acquired infections. Clin Infect Dis 2009;49:142–147.
     
  10. Batchelor BI, Brindle RJ, Gilks GF, Selkon JB. Biochemical mis-identification of Brucella melitensis and subsequent laboratory-acquired infections. J Hosp Infect 1992;22:159–162.
     
  11. Klevar S, Høgåsen HR, Davidson RK, Hamnes IS, Treiberg Berndtsson l, Lund A. Cross-border transport of rescue dogs may spread rabies in Europe. Vet Rec 2015;176:672–675.
     
  12. Public Health England. Risk Review and Statement on the Risk Brucella Canis Presents to the UK Human Population. Accessed April 2021. Available here.
     
  13. Holst BS, Löfqvist K, Ernholm L, Eld K, Cedersmyg M, Hallgren G. The first case of Brucella canis in Sweden: background, case report and recommendations from a northern European perspective. Acta Vet Scand 2021;54:18.
     
  14. Dunne J, Sehgal K, McMillan A, Perret L. Canine brucellosis in a dog imported into the UK. Vet Rec 2002;151:247.
     
  15. Arenas-Gamboa AM, Rossetti CA, Chaki SP, Garcia-Gonzalez DG, Adams LG, Ficht TA. Human brucellosis and adverse pregnancy outcomes. Curr Trop Med Rep 2016;3: 164–72.
     
  16. Santos RL, Souza TD, Mol JPS, Eckstein C, Paíxão TA. Canine brucellosis: An update. Front Vet Sci 2021;8:1–17.

 

SARS-CoV-2: mutations, variants and traits

 

  1. Zhang YZ, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 2020;181:223–227.
     
  2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–733.
     
  3. Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003;348:1967–1976.
     
  4. Belshaw R, Gardner A, Rambaut A, Pybus OG. Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol 2008;23:188–193.
     
  5. International Committee on Taxonomy of Viruses Executive Committee. The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nat Microbiol 2020;5:668–674.
     
  6. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol 2010;84:9733–9748.
     
  7. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B et al. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA 2006;103:5108–5113.
     
  8. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2. J Virol 2020;94:e01246-20.
     
  9. Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 2011;8:270–279.
     
  10. Dearlove B, Lewitus E, Bai H, Li Y, Reeves DB, Joyce MG et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc Natl Acad Sci USA 2020;117:23652–23662.
     
  11. Yang J, Petitjean SJL, Koehler M, Zhang Q, Dumitru AC, Chen W et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun 2020;11:4541.
     
  12. Centres for Disease Control and Prevention. SARS-CoV-2 Variant Classifications and Definitions. Accessed May 2021. Available at: www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
     
  13. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2021;592:116–121.
     
  14. Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 2021;593:266–269.
     
  15. Kemp SA, Collier DA, Datir RP, Ferreira IATM, Gayed S, Jahun A et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021;592:277–282.
     
  16. Ambrosioni J, Blanco JL, Reyes-Urueña JM, Davies MA, Sued O, Marcos MA et al. Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV 2021;8:294–305.
     
  17. Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA et al. Neutralizing activity of BNT162b2-elicited serum. N Engl J Med 2021;384:1466–1468.
     
  18. Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021;593:270–274.
     
  19. Frampton D, Rampling T, Cross A, Bailey H, Heaney J, Byott M et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect Dis 2021;doi:10.1016/S1473-3099(21)00170-5 (Epub ahead of print).
     
  20. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021;372:eabg3055.
     
  21. Public Health England. Investigation of Novel SARS-CoV-2 Variant: Variant of Concern 202012/01. Available at: www.gov.uk/government/publications/phe-investigation-of-novel-sars-cov-2-variant-of-concern-20201201-technical-briefing-3-6-january-2021
     
  22. Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021;372:815–821.
     
  23. Buss LF, Prete CA, Abrahim CMM, Mendrone A Jr, Salomon T, de Almeida-Neto C et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science 2021;371:288–292.
     
  24. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J et al. Emergence of a SARS-CoV-2 variant of concern with mutations in spike glycoprotein. Nature 2021;592:438–443.

Vaccine-induced immune thrombocytopenia and thrombosis

 

  1. Office for National Statistics. Coronavirus (COVID-19) roundup. Available here.
     
  2. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR et al; Oxford COVID Vaccine Trial Group. Safety vaccine administered in a prime boost regimen in young and old adults (COV002): a single-blind, randomised controlled, phase 2/3 trial. The Lancet 2021;396:1979−1993.
     
  3. Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M et al. Pathologic antibodies to platelet factor 4 after ChAdOx1nCov-19 vaccination. N Engl J Med 2021;384:2202−2211.
     
  4. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med 2021;384:2092−2101.
     
  5. GOV.UK. Coronavirus (COVID-19) in the UK: Deaths in the England. Available at: https://coronavirus.data.gov.uk/details/deaths?areaType=nation%26areaName=England
     
  6. Platton S, Bartlett A, MacCallum P, Makris M, McDonald V, Singh D et al. Evaluation of laboratory assays for anti-Platelet Factor 4 antibodies after ChAdOx1 nCOV-19 vaccination. J Thromb Haemost 2021; doi.org/10.1111/jth.15362 (Epub ahead of print).
     
  7. Warkentin TE, Makris M, Jay RM, Kelton JG. A spontaneous prothrombotic disorder resembling heparin-induced thrombocytopenia. Am J Med 2008;121:632−636.
     
  8. Warkentin TE, Basciano PA, Knopman J, Bernstein RA. Spontaneous heparin-induced thrombocytopenia syndrome: 2 new cases and a proposal for defining this disorder. Blood 2014;123:3651−3654.
     
  9. Greinacher A, Selleng K, Warkentin TE. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost 2017;15:2099−2114.
     
  10. Greinacher A, Selleng K, Wesch J, Handtke S, Palankar R, Aurich K et al. Towards Understanding ChAdOx1 nCov-19 Vaccine-induced Immune Thrombotic Thrombocytopenia (VITT). Research Square 2021;doi:10.21203/rs.3.rs-440461/v1 (Preprint).
     
  11. von Hundelshausen P, Lorenz R, Siess W, Weber C. Vaccine-induced immune thrombotic thrombocytopenia (VITT): targeting pathomechanisms with Bruton tyrosine kinase inhibitors. Thromb Haemost 2021;doi:10.1055/a-1481-3039 (Epub ahead of print).
     
  12. Kowarz E, Krutzke L, Reis J, Bracharz S, Kochanek S, Marschalek R. Vaccine-Induced Covid-19 Mimicry” Syndrome: Splice reactions within the SARS-CoV-2 Spike open reading frame result in Spike protein variants that may cause thromboembolic events in patients immunized with vector-based vaccines. Research Square 2021;doi:10.21203/rs.3.rs-558954/v1 (Preprint).
     
  13. Pavord S, Lester W, Makris M, Scully M, Hunt B. Guidance from the Expert Haematology Panel (EHP) on Covid-19 Vaccine-induced Immune Thrombocytopenia and Thrombosis (VITT). Published April 2021. Available at: https://b-s-h.org.uk/media/19590/guidance-version-17-on-mngmt-of-vitt-20210420.pdf

RCPath Book Club – sinking our teeth into Gulp

 

  1. Bowel Cancer UK. Bowel Cancer. Available at: www.bowelcanceruk.org.uk/about-bowel-cancer/bowel-cancer/

Learning styles of histopathology trainees in the UK

 

  1. Fleming ND. Teaching And Learning Styles: VARK Strategies (2nd Edition). Christchurch, New Zealand: The Digital Print and Copy Center, 2005.
     
  2. Curry L. Learning preferences in continuing medical education. Canadian Med Assoc J 1981;124:535–536.
     
  3. Ahmed A, Wojcik EM, Ananthanarayanan V, Mulder L, Mirza KM. Learning styles in pathology: a comparative analysis and implications for learner-centred education. Acad Pathol 2019;doi:10.1177/2374289519852315.
     
  4. Fleming ND, Mills C. Not Another Inventory, Rather A Catalyst For Reflection. 1992. Available at: https://digitalcommons.unl.edu/podimproveacad/246Fleming ND. I’m Different; Not Dumb. Modes Of Presentation (VARK) In The Tertiary Classroom. In: Zelmer A (ed.). Research and Development in Higher Education, Proceedings of the 1995 Annual Conference of the Higher Education and Research Development Society of Australasia (HERDSA). Hammondville, Australia: HERDSA, 1995.
     
  5. Sinnerton T, Leonard L, Rogers K. Using learning style preferences to enhance the education and training of allied health professionals. Internet J Allied Health Sci Pract 2014;12:1.

Teaching undergraduate pathology during COVID-19 – sharing experience from our medical school

 

  1. Mukhopadhyay S, Booth AL, Calkins SM, Doxtader EE, Fine SW, Gardner JM et al. Leveraging technology for remote learning in the era of COVID-19 and social distancing. Arch Pathol Lab Med 2020;144:1027–1036.
     
  2. Samueli B, Sror N, Jotkowitz A, Taragin B. Remote pathology education during the COVID-19 era: Crisis converted to opportunity. Ann Diagn Pathol 2020;49:151612.
     
  3. Gosney JR, Hofman P, Troncone G, Lopez-Rios F. Cellular pathology in the COVID-19 era: a European perspective on maintaining quality and safety. J Clin Pathol 2021;74:64–66.
     
  4. RCPath. Undergraduate Resources. Accessed April 2021. Available from www.rcpath.org/discover-pathology/undergraduates-and-foundation- doctors/undergraduate-resources.html
     
  5. Mayhew E, Davies M, Millmore A, Thompson L, Bizama AP. The impact of audience response platform Mentimeter on the student and staff learning experience. Res Learn Tech 2020;28:2397.

Creation of e-forms in CRRS to facilitate a robust clinical record for clinicians

 

  1. General Medical Council. The Shape of Training (2017). Accessed 16 June 2020. Available from: www.gmc-uk.org/-/media/documents/Shape_of_training_FINAL_Report.pdf_53977887.pdf

Paediatric and perinatal pathology

 

  1. The Royal College of Pathologists. Sudden Unexpected Death in Infancy and Childhood: Multiagency Guidelines for Care and Investigation. Accessed May 2021. Available at: www.rcpath.org/discover-pathology/news/new-guidelines-for-the-investigation-of-sudden-unexpected-death-in-infancy-launched.html
     
  2. Hyde G, Rummery R, Whitby EH, Bloor J, Raghavan A, Cohen MC. Benefits and limitations of the minimally invasive postmortem: a review of an innovative service development. Pediatr Dev Pathol 2020;23:431–437.