

# Artificial Intelligence as the Histopathologist's Assistant: Addressing the Problem of Domain Shift

Rebecca Nachiappan. College of Medical and Dental Sciences, University of Birmingham.

### Introduction

- Mitosis detection is important for grading cancers.
- Computational scientists have been developing machinelearning algorithms to automate this process.
- However, the use of different scanners and staining protocols in different centres causes domain shift<sup>3</sup>.
- This complicates the development of a model that can be generalised across different centres<sup>3</sup>.

### Aim

To conduct a literature review on methods used to address domain shift in training a machine learning model for mitosis detection, with a focus on stain normalisation and data augmentation techniques.

### Method

- A PubMed search using the search terms "domain shift" and "mitosis detection".
- Search was limited to articles published over the last five years.
- Relevant references within these articles were also included.
- This generated a list of 21 articles for the literature review<sup>1-21</sup>.



data augmentation was mentioned in 20 articles.

### **Findings** Centre 1 Centre 2



Figure 4: Illustration of how data augmentation takes existing slide images and performs random transformations on them such as flipping, Figure 3: Illustration of how stain normalisation takes histology slide images rotating and colour/contrast changes to create synthetic images<sup>10</sup>. from different centres and processes them according to a template using a Created in BioRender. Nachiappan, R. (2024) BioRender.com/I59i291. colour matrix<sup>10</sup>. Created in BioRender. Nachiappan, R. (2024) BioRender.com/I59i291.

#### SN alone can be detrimental<sup>1,10,11</sup>

- Does not remove domain-specific differences<sup>15</sup>
- Time-consuming as it adds a lot of computational overhead<sup>15</sup>
- Neural-network methods of SN seem better than traditional methods<sup>10</sup>
- Combining SN with DA methods yields better results<sup>10</sup>

Figure 5: Key points gleaned from the literature review. 'SN' refers to stain normalisation and 'DA' refers to data augmentation.

### Conclusion

Stain normalisation and data augmentation are both techniques that can reduce domain shift when developing a machine learning algorithm for mitosis detection. However, data augmentation methods have their strengths over using stain normalisation methods on their own. If only stain normalisation can be used, neural-network based methods are preferable. The research into creating a machine learning model for mitosis detection that can tolerate images with a high degree of variation is still in its infancy.

## University of **Birmingham**









#### DA outperforms SN in improving model generalisability<sup>4,8,9,12,16,21</sup>

- DA simulates stain variation by creating synthetic images<sup>16</sup>
- DA does not add as much computational overhead<sup>15</sup>
- DA avoids loss of relevant information due to limitations of SN methods<sup>16</sup>

